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ABSTRACT
Information and content can spread in social networks analogous to
how diseases spread between organisms. Identifying the source of
an outbreak is challenging when the infection times are unknown.
We consider the problem of detecting the source of a rumor that
spread randomly in a network according to a simple diffusionmodel,
the susceptible-infected (SI) exponential time model. The infection
times are unknown. Only the set of nodes that propagated the rumor
before a certain time is known. Since evaluating the likelihood
of spreads is computationally prohibitive, we propose a simple
and efficient procedure to approximate the likelihood and select a
candidate rumor source. We empirically demonstrate our method
out-performs the Jordan center procedure in various random graphs
and a real-world network.

CCS CONCEPTS
• Mathematics of computing → Maximum likelihood esti-
mation; • Applied computing→ Sociology.

KEYWORDS
Complex networks, information source, maximum likelihood (ML)
estimator, sparse graph

ACM Reference Format:
Guanyu Nie and Christoper Quinn. 2019. Localizing the Information Source
in a Network. In Proceedings of Truth Discovery and Fact Checking: Theory
and Practice (TrueFact 2019). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
With the advent of internet, and specifically online social network-
ing platforms, information and ideas can spread rapidly. These
decentralized diffusions can be beneficial, allowing citizens to cir-
cumvent traditional mediums such as radio and television to quickly
broadcast information. However, they can also allow rumors to
spread to a large audience before fact-checking can be performed
and corrective information disseminated to mitigate any significant
damage accidentally or intentionally false rumors can cause.

In this paper, we consider the problem of identifying the source
of the information diffusion when timing information is not known.
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Instead, we know the set of nodes that propagated the rumor, e.g. the
“infected” nodes, before a certain time. We also know the diffusion
model, a stochastic susceptible-infected (SI) model with indepen-
dent exponential spreading times. In principle, we could compute
the likelihood of each infected node as the source. However, that
is challenging even for simple network topologies such as chains
and trees. For networks with non-tree topologies, for which there
are many paths the diffusion could have taken, it is necessary to
develop alternative procedures.

Shah and Zaman were the first to study this problem under the
same diffusion model [1]. They focused on networks with tree
topologies and proposed a novel centrality metric, known as rumor
centrality, for ranking candidate rumor sources. They proved the
best candidate according to rumor centrality had the highest likeli-
hood for regular trees (uniform degrees). They proved their results
to be asymptotically good for regular trees and geometric trees
(where the tree grows polynomially). They extended their results
to more general graphs using a bread-first search heuristic which
performed well on many random graphs and real world networks.

In [2], [3] and [4], more complex propagation models were inves-
tigated, susceptible-infected-susceptible (SIS), susceptible-infected-
recovered (SIR), susceptible-infected-recovered-infected (SIRI) re-
spectively. It was also shown in [5] that under the SI, SIR and SIRI
models, the Jordan center is the infection source in a tree-network
associated with the most likely infection path with a single infection
source. Hence, Jordan centers are considered “universal” informa-
tion source estimators for trees. The Jordan center of a graph is
the node whose longest shortest-path to any other node is mini-
mal. Other methods in estimating the source of SIR model include
dynamic message passing (DMP) [6] and belief propagation [7].

One generalization of this problem was to consider multiple
sources of a single diffuion. The result of [3] is not restricted to
assuming a single source. In [8], the number of infection sources
was estimated. In [9–11], the problem of detecting multiple sources
was studied. Another generalization was to allow for only a portion
of the infected nodes to be observed, randomly in [3] and arbitrarily
in [12]. The estimator proposed in [12] is optimal for geometric
trees as described above when the observation rate (proportion of
observed nodes) is greater than 0. See [13] for a detailed survey.

We propose a simple and efficient procedure to estimate the
rumor source. To circumvent the computational difficulty of evalu-
ating the likelihood of node infections on a general graph, we use a
sparse approximation. For each candidate source, we approximate
the likelihood of that source infecting or not each of the other nodes
in the graph independently.We formally describe our problem setup
in Section 2. Rumor source detection on tree graphs is studied in
Section 3 and extended to general graphs in Section 4. Empirical
results on random graphs and a subgraph of the Facebook network
are presented in Section 5. We conclude the paper in Section 6.
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2 PROBLEM SETUP
In this section, we discuss the information spreading model and
the maximum likelihood estimator. The network is represented as
an undirected graph G(V ,E) where V represents the set of nodes
(e.g. users) in the network and E represents the set of edges (e.g.
user-defined “friend” relationships).

2.1 Information Spreading Model
We use the SI infection model where nodes in the graph are either
“susceptible" (have not yet heard the information) or “infected"
(have already heard the information). Once a node receives the
information, the node can transmit the information along each of
its edges to its neighbors. Let τi j denote the time it takes for the
information to spread from from node i to another node j directly.
We assume that τi j can be modeled as an exponential random
variable with rate parameter λ for all (i, j) ∈ E, and all the τi j ’s are
independent and identically distributed. We assume only one node,
denoted v0, is the information source. An example network of this
model is shown in Figure 1.

Figure 1: Example network illustrating information spread-
ing model.

2.2 Maximum Likelihood (ML) Source
Estimator

We consider the setting where one source v0 initiates the infor-
mation spreading on graphG at time 0 and after some time T we
get a snapshot of the network. Let N denote the number of nodes
infected by time T . We denote the snapshot (graph G with binary
labels) as GN . The key idea of maximum likelihood estimator is to
find the node v that has the highest probability of resulting in GN .
We assume that there is no (informative) prior on which node might
be the source. Thus, the maximum-a-priori estimate is also the max-
imum likelihood estimate, e.g. P(GN |v) = P(v |GN ) where P(GN |v)
is the probability of observing GN given v being the source and
P(v |GN ) defined similarly. In this setting, the maximum likelihood
(ML) estimator of vML given GN maximizes the correct detection
probability, i.e.,

vML ∈ argmax
v ∈GN

P(GN |v). (1)

Evaluating P(GN |v) is computationally hard. Assuming only one
node can be infected at each time step. We need to calculate the
probability of all possible permutations of infected nodes repre-
senting infection paths, which requires O(N !) space and time in
worst case. It is even more complicated when more vertices can be
infected at one time step.

3 TREES
As discussed above, Evaluating P(GN |v) is computationally expen-
sive. We next describe a procedure to approximate P(GN |v) for
trees.

Suppose the underlying graph G is a tree. At time 0, node v0
begins a rumor spread. At time T , we observe GN . Let I denote
the infected set in GN . One approach to efficiently approximate
P(GN |v) is to calculate the probability ofGN assuming conditional
independence given a candidate source v :

P(GN |v) = P(i ∈ I , j ∈ G \ I |v0 = v)

≈
∏
i ∈I
P(i ∈ I |v0 = v)

∏
j ∈G\I

P(j ∈ G \ I |v0 = v). (2)

Suppose for example, thatGN , observed at timeT , corresponded
to the network shown in Figure 2, with I corresponding to the
shaded nodes. The actual likelihood of this GN conditioned on
node 1 being the source is

P({1, 2, 3, 5} ∈ I and {4, 6, 7} < I |v0 = 1)
= P(τ1,2 < T ,τ1,2 + τ2,5 < T ,τ1,3 < T ,τ1,2 + τ2,4 > T ,

τ1,2 + τ2,6 > T ,τ1,3 + τ3,7 > T |v0 = 1)
≈ P(τ1,2 < T |v0 = 1) P(τ1,2 + τ2,5 < T |v0 = 1)
P(τ1,3 < T |v0 = 1) P(τ1,2 + τ2,4 > T |v0 = 1)
P(τ1,2 + τ2,6 > T |v0 = 1) P(τ1,3 + τ3,7 > T |v0 = 1)

Figure 2: Example network

Now the problem left is to evaluate each term on the right-hand
side in (2). Recall that the transition time between two neighboring
nodes τi j is an exponential distribution with rate parameter λ. Also
notice that the sum of n exponential random variables with with
rate parameter becomes a gamma distribution random variable
with shape parameter n and rate parameter λ. Thus the infection
time of every node in G can be seen as a random variable with
gamma distribution, i.e., the probability of one node receives rumor
from another node n edges away within time t becomes

F (t ;n, λ) =
γ (n, λt)

Γ(n)

Where γ (n, λt) is the lower incomplete gamma function defined as:

γ (s,x) =

∫ x

0
ts−1e−tdt

More precisely, we shall extend the original tree graph to a star
graph with different transition time distribution. Again let’s con-
sider the simple example shown in Figure 2. Under the hypothesis
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Figure 3: Converted star graph

that node 1 is the source, the original graph can be converted to
the network shown in Figure 3.

Let Γi j be the random variable representing the time it takes
for node j to receive rumor from node i in the star graph. For this
approximation, the Γi j ’s are independent random variables with
gamma distributionwith parametersd and λ, whered is the distance
(number of edges) between two nodes i and j . Since the underlying
graph is a tree, there is no ambiguity of parameter d (there is only
one path from one node to another). We can calculate each node
being infected or not accordingly and plug it into (2),

P({1, 2, 3, 5} ∈ I and {4, 6, 7} < I |v0 = 1)

≈ [F (T ; 1, λ)]2 F (T ; 2, λ) [1 − F (T ; 2, λ)]3

4 GENERAL GRAPHS
Now we want to generalize the procedure to general graphs. The
challenging part is that there might be multiple, possibly overlap-
ping paths from one node to another, which gives random variables
with different gamma distributions. To take this into account, we
will construct a simple heuristic.

Our heuristic is described in Algorithm 1, and based on the
following simple idea. The distance between two nodes may take
many different values, but it may be that a majority of them have
a common value. We approximate the rumor transition between
two nodes as always going through the shortest path between
them, which correspond to the fastest or most probable spreading
of the rumor in general. A simple example is shown in Figure 4. To
approximate the likelihood of node i as the source, we will form
a star graph analogous to the tree-graph case in Figure 2. For the
edge (i, j) in the star graph, we use the distribution of infections
propagating along the shortest path from i to j in the original graph
G.

5 DATA ANALYSIS
5.1 Random Graphs
Many real world graphs have various statistical properties, such as
small diameter, high clustering coefficients, modularity, and power-
law degree distributions (or hubs) [14]. To evaluate the performance
of our proposed method, we will examine its performance under
various random graph models, where we will both know the ground

Figure 4: When there multiple paths from node i to j, we
select shortest path when converting to star graph.

Algorithm 1: A source detection algorithm
Input: G (network graph), I (infected nodes), T (total

propagation time)
Output: rumor source estimate

initialization;
p ← {};
source ← v ∈ I ;

forall v ∈ I do
p(v) ← 1;
forall u ∈ G .nodes do

n ← ShortestPath(v,u);
if u ∈ I then

p(v) ← p(v) ∗ F (T ;n, λ);
/* F is the cdf of gamma distribution */

else
p(v) ← p(v) ∗ (1 − F (T ;n, λ));

end
end

end
return source ← argmaxv ∈I P(v)

truth and be able to identify for what graph properties our method
works well.

5.1.1 Random graphmodels: Erdos-Renyi model. In the Erdos-Renyi
model [15], a graphG is constructed by connecting nodes randomly.
For each possible edge, an i.i.d. Bernoulli random variable with suc-
cess probability p is drawn. If successful, the corresponding edge
is included. Figure 5a shows an Erdos-Renyi Graph with 50 nodes
and p = 0.08.

5.1.2 Random graph models: Barabasi-Albert model. The Barabasi-
Albert (BA) model [16] is used to generate scale-free networks. The
degree distribution follows a power-law and has a non-vanishing
tail (e.g. some nodes have very high degree relative to the others).
The network is constructed fromm0 initial nodes. Nodes are added
one at a time. Each new node is connected tom ≤ m0 existing nodes
with probability proportional to the degree of existing node, i.e.,
existing nodes with higher degree have a higher chance of getting
connected by new nodes. Figure 5b shows a Barabasi-Albert graph
with 50 nodes andm = 1.
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(a) Erdos-Renyi (b) Barabasi-Albert (c) WattsStrogatz

Figure 5: Example random graphs

Figure 6: Three rows show results on Erdos-Renyi graph, Barabasi-Albert graph andWattsStrogatz graph, respectively. In first
column, the source is fixed when doing simulation. For second column, we select true source uniformly at random. For the
third column, the nodes with higher degree centrality have more chance to be selected as source.

5.1.3 Random graph models: Watts-Strogatz model. The Watts-
Strogatz model [17] is used to generate networks with the “small-
worlds” property. Roughly speaking, this kind of network has both
short average path lengths and high clustering. Given the param-
eters N , K and β , The graph is generated as follows: construct a
regular ring lattice, a graph with N nodes each connected to K
neighbors, K/2 on each side; then for every node, take its right-
most K/2 edges, and rewire it with probabilty β . Figure 5c shows a
Watts-Strogatz graph with N = 50, K = 4 and β = 0.4.

5.2 Rumor spreads on random graphs
5.2.1 Setup. We perform simulations on random graphs with 300
nodes. The parameters were selected so that the graphs all had
similar average degree. We selected the ground-truth source using
three methods: (1) randomly pick a source and use it throughout all
diffusions; (2) uniformly choose sources from infected nodes before
each diffusion; (3) chooses sources according to degree centrality
(nodes with larger degree centrality have more chance to be picked)
before each diffusion. We generated each plot using 8000 diffusion
simulations.
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5.2.2 Results. Figure 6 shows the results of Algorithm 1 against the
Jordan center. Jordan center was calculated by built in algorithm of
networkx [18]. We plotted error vs. percentage of infected nodes in
the network, where error is measured by the order that the estimator
is infected. For example, if in a trial one of the methods selected
the 21st node that was infected as the rumor source candidate, that
would be an error with value 20. The shaded are corresponds to 95%
confidence area for the curve fit using the дeom_smooth method
in the R package ggplot2. Overall, Algorithm 1 performs better in
almost all settings examined than the Jordan center. For scale-free
networks (BA), our proposed method outperforms Jordan center by
a wide margin. A possible explanation is that in scale-free networks,
the high-degree “hub” nodes tend to have high Jordan-centrality.
Thus, the Jordan center method would often pick hubs that were
infected. Our method accounts not only for proximity to infected
nodes but also distance from uninfected nodes.

5.3 Real-world graph
5.3.1 Data-set description: We also performed simulations on a
data set collected from Facebook [19].1 The network was collected
from survey participants using a Facebook app. Two nodes are
connected when the users they represent have same political affilia-
tions. The network has 4039 nodes and 88234 links. The network is
shown in Figure 7. For simplicity, we used community detection al-
gorithms and used one community as our network. The community
has 372 nodes and 2929 edges.

5.3.2 Setup and results: For each method, we ran 500 diffusions.
The ground truth source was picked uniformly at random. The
results are shown in Figure 8. Our proposed method performs
similarly with Jordan center for small diffusions, but much better
than Jordan center for larger diffusions. Similar to the performance
of the scale-free graphs, we hypothesize the performance gain is
because our proposed Algorithm 1 seeks to select a candidate source
by balancing closeness to infected nodes with distance to uninfected
nodes, while the Jordan central method only seeks the former.

Figure 7: Facebook network

6 CONCLUSION
In this work, we proposed a novel, efficient information source
estimator using star-graph approximations. We verified on both
random graph models and on a subgraph of the Facebook network
1Available at http://snap.stanford.edu/data/ego-Facebook.html

Figure 8: Simulation result on real-world data

that our approach in some situations is slightly better than, and in
other cases significantly outperforms, the Jordan center.

REFERENCES
[1] D. Shah and T. Zaman. Rumors in a network:Who’s the culprit? IEEE Transactions

on Information Theory, 57(8):5163–5181, Aug 2011.
[2] W. Luo and W. P. Tay. Finding an infection source under the sis model. In 2013

IEEE International Conference on Acoustics, Speech and Signal Processing, pages
2930–2934, May 2013.

[3] Kai Zhu and Lei Ying. Information source detection in the sir model: A sample-
path-based approach. IEEE/ACM Trans. Netw., 24(1):408–421, February 2016.

[4] W. Hu, W. P. Tay, A. Harilal, and G. Xiao. Network infection source identification
under the siri model. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1712–1716, April 2015.

[5] W. Luo, W. P. Tay, and M. Leng. On the universality of jordan centers for
estimating infection sources in tree networks. IEEE Transactions on Information
Theory, 63(7):4634–4657, July 2017.

[6] Andrey Y. Lokhov, Marc Mézard, Hiroki Ohta, and Lenka Zdeborová. Inferring
the origin of an epidemic with a dynamic message-passing algorithm. Phys. Rev.
E, 90:012801, Jul 2014.

[7] Fabrizio Altarelli, Alfredo Braunstein, Luca Dall’Asta, Alejandro Lage-Castellanos,
and Riccardo Zecchina. Bayesian inference of epidemics on networks via belief
propagation. Phys. Rev. Lett., 112:118701, Mar 2014.

[8] F. Ji, W. P. Tay, and L. R. Varshney. Estimating the number of infection sources
in a tree. In 2016 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pages 380–384, Dec 2016.

[9] F. Ji and W. P. Tay. Identifying rumor sources with different start times. In 2016
IEEE Statistical Signal Processing Workshop (SSP), pages 1–5, June 2016.

[10] W. Luo and W. P. Tay. Identifying infection sources in large tree networks. In
2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), pages 281–289, June 2012.

[11] W. Luo, W. P. Tay, and M. Leng. Identifying infection sources and regions in
large networks. IEEE Transactions on Signal Processing, 61(11):2850–2865, June
2013.

[12] N. Karamchandani and M. Franceschetti. Rumor source detection under proba-
bilistic sampling. In 2013 IEEE International Symposium on Information Theory,
pages 2184–2188, July 2013.

[13] J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou. Identifying propagation sources
in networks: State-of-the-art and comparative studies. IEEE Communications
Surveys Tutorials, 19(1):465–481, Firstquarter 2017.

[14] Mark Newman. Networks: an Introduction. Oxford University Press, 2010.
[15] P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen,

6:290, 1959.
[16] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-

works. Reviews of Modern Physics, 74(1):47–97, Jan 2002.
[17] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 393(6684):440–442, June 1998.
[18] Aric A. Hagberg, Daniel A Schult, and Pieter J. Swart. Exploring network struc-

ture, dynamics, and function using NetworkX. In In Proceedings of the 7th Python
in Science Conference (SciPy2008), Pasadena, CA USA, pages 11–15. SciPy, 2008.

[19] Jure Leskovec and Julian J. Mcauley. Learning to discover social circles in ego
networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 539–547. Curran
Associates, Inc., 2012.

http://snap.stanford.edu/data/ego-Facebook.html

	Abstract
	1 Introduction
	2 Problem setup
	2.1 Information Spreading Model
	2.2 Maximum Likelihood (ML) Source Estimator

	3 Trees
	4 General Graphs
	5 Data Analysis
	5.1 Random Graphs
	5.2  Rumor spreads on random graphs
	5.3 Real-world graph

	6 Conclusion
	References

